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stiffener about its line of attachment to the plating and has been
demonstra ted by some recent British grillage teats to have serious
potential as a primary mode of failute . The solutions developed
take into account the effects of (1) the rotational resistance
provided by the plating to which the stiffener is attached, (2) non—
linear material and structural behavior by means of a tangent
modulus type approach , and (3) stiffener web deformations (fox~ in—
plane loading). The equations are suitable for manual calculations
but particularly powerful applicationG are possible when they are
teamed up with a desk-top type mini—computer. 

-

A number of comparisons between tripping predictions made using
these equations and numerical finite element results in general show
very good agreement. For the case of lateral loading the agreement
is less consistently acceptable, primarily because of the more
complicated nature of the tripping mode shapes and the inability at
present to include the effects of web deformations for this loading.
Comparisons are also made with experimental collapse data from two
of the British grillages which failed by tripping and the agreement
is quite good. Unfortunately, the mean tripping failure stresses
(the basis of these comparisons) are quite sensitive to the esti-
mates of plating effectiveness and thus wide variations in predicted
mean stresses are possible. Thus, this limited experimental vali-
dation is not as conclusive as might be hoped for.

The development of these design equations is quite timely in
view of the current interest being shown in the use of bulbs and
flat bars as stiffening members (for reasons of economy). Such
members are inherently weak with respect to tripping and their
application would require that careful attention be given to
tripping behavior.
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A
1 Cross—sectional area of stiffener flange

A Cross—sectional area of stiffener
S

a Length of stiffener between transverse supports

b Uniform s t i f fener  spacing

b Plat ing e f f ec t i ve  width —

C Rotational spring constant (moment/length) of
suppor t ing  plating

C Rotat iona l spr ing constant of unloaded supporting
pla t ing

c • Coe f f i c i en t s  in thin plate theory tripping equation

D Flexural r ig id i ty  of plating

D Flexural rigidity of web plating of stiffener

d Depth of flat bar stiffener ; overall depth of
tee stiffener

d Depth of stiffener to midthickness of flange

d Depth of stiffener webw

E Material Young ’s modulus

— E
~ 

Material tangent modulus

F (K) Quadratic function for tripping under lateralm loading

f Width of s t i f fener  flangew

f0,f1,f2 Coefficients in F (K) function

G Material shear modulus

H (K ) ,H (K) Quadratic functions for tripping under lateralm m loading
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h Height of neutral axis of plate—stiffener combination
from midplane of plating

h01h1, h2 Coefficients in H (K) function

h0,h1, h2 Coefficients in H (K) func t ion

1 Effective vertical moment of inertia of s t i f f ene r  and
associated effective width of plating

I Polar moment of inertia of stiffener about toe
p

I Polar moment of inertia of stiffener about shear center
PS

It 
Vertical moment of inertia of stiffener (alone)
about toe

Moment of inertia of stiffener about web plane V

1zf Moment of inertia of stiffener flange about web plane

J St. Venant torsion constant for stiffener

K Mode shape weighing factor

Coefficients in axial load tripping equation

Coefficients in constant moment tripping equation

H Verttcal bending moment

M ,M Elastic , inelastic (vertical) tripping moments

N Fully plastic moment of plate—stiffener cross section

m Mode number

P Axial end load

Structural proportional limit ratio

q Uniform lateral loading (force/length)

Elastic , inelastic uniform lateral tripping load
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R Dimensionless rotational restraint parameter

R Dimensionless rotational restraint  coeffic ient

S P la t e—st i f f ene r  geometrical parameter

s Height of s t i ff e n e r  shear center above toe

t Plate thickness

t f S t i f f ene r  f lange thickness

S t i f f e n e r  web thicknessw

U Total potentia l energy of s t ructure

V U Potent ia l  energy of the loading

V Total stra in energy of the structure

v Sideways flexure of stiffener shear center*

v Sideways flexure amplitude coefficient

V 

v (z) Sideways flexure of stiffener web midplane

W Total work of app l ied forces

V U Work component of axia l end load

W
q 

Work component of uniform lateral loading

w Vertical flexure of stiffener; lateral flexure
of plate*

w Plate lateral flexure amplitude coefficient
0

z Height of s t i ffener centro id above toe

Parameters in thin plate theory tripping equation

~npi r ical  indices in combined load tripping
interaction formula

*Note: x and z subscripts applied to these parameters indicate
part ial derivatives with respect to those coordinates. V
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Average axial stress in plating (alone)
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e~~re ’~~ e~cr 
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~~e ) m
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buckl ing for  mode in

be Axial st ress in stif f ener at minimum elasticp p late  buck ling load

1
~ m

)
cre~ Elas t ic , inelastic mean axial tripp ing stress

V (i  ) over the total plate—stiffener cross section
in cr

Classical , elastic , uni form p late bu ckling
P st ress for  mode in

‘
~ be ”~ b El astic , inelastic uni form p late buckling stress ,
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ABSTRACT

A series of design oriented equations to predict the
F tripping (lateral—torsional instability) of stiffeners

under inpiane and lateral loads has been developed which
will allow this mode of fa i lure  to be more comprehensively
add ressed in the early stages of s t ructural  design. This
type of fai lure is characterized by a twisting of the
s t i f fener  about its line of attachment to the plating and
has been d~ nonstrated by some recent British grillage
tests to have serious potential as a primary mode of
failure. The solutions developed take into account the
effec ts  of (1) the rotational resistance provided by the
plating to which the s t i f f ene r  is attached , (2) non-
linear material and structural  behavior by means of a
tang ent modulus type approach , and (1~ stiffener  web de—
formations (for inpiane loading). The equations are
suitable f or manual calculations but particularly power-
ful  app lications are possible when they are teamed up
with a desk—top type mini—computer.

A number of comparisons between tripping predictions
made using these equations and numerical finite element
results in general show very good agreement. For the
case of lateral loading the agreement is less consistently
acceptable, primarily because of the more complicated
nature of the tripp ing mode shapes and the inability at
present to include the effects of web deformations for this
loading. Comparisons are also made with experimental
collapse data from two of the British grillages which

V 
- failed by tripping and the agreement is quite good. Un-

fortunately, the mean tripping failure stresses (the
basis of these comparisons) are quite sensitive to the
estimates of plating effectiveness and thus wide
variations in predicted mean stresses are possible. Thus,
this limited experimental validation is not as conclusive
as might be hoped for.

The development of these design equations is quite
timely in view of the current interest being shown in
the use of bulbs and flat bars as stiffening members (for
reasons of economy). Such members are inherently weak
with respect to tripping and their application would
require that careful attention be given to tripping
behavior.

ADMINISTRATIVE INFORMAT ION

The work described in this report was performed at the David W. Taylor

Naval Ship Research and Development Center under the sponsorship of the

1
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NAVSEA 6.2 Exploratory Development Program, specifically the Surface Ship

Structures Block , Program Element 62543N, Task Area SF 43 422 593 and
Work Units 1730—593 and 1730—610.

INTRODUCTION
A series of tests on ship—type steel grillages conducted at the Naval

1*Construction Research Establishment (NCRE ) and recently reported has

clearly demonstrated the significance of lateral—torsional instability

(tripping) as a primary ductile failure mode for ship structure. The

potential for such failure has important ramifications with regard to
structural weight, fabrication cost, and structural reliability. Whereas V

tripping brackets, which are perhaps the most common measure employed to

prevent this ailment, are advantageous from a weight standpoint, they

suffer the disadvantages of increasing fabrication cost and of introducing

hard spots at their toes which may give rise to fatigue problems and weaken

the structure under explosive loading. In any case it seems clear that the

ability to predict tripping failure in the early stages of design can have

important consequences on the design of both conventional and high

performance ships.

Surprisingly little material exists in the literature on the subject

of tripping of stiffeners welded to continuous plating. In the elastic

region tripping stresses can be estimated using approximate formulas2’3

(for certain selected cases of loading) or more generally using folded—

plate4’5 or finite element analysis. In the inelastic region no satis—

factory method appears to exist at present although the application of

incremental finite element analysis would appear to offer great promise.

The main thrust of this study is the development of fast, approximate

methods of tripping analysis for particular application in the concept,

feasibility, and preliminary stages of design. As mentioned above,

approximate formulas do exist in the literature, however, the work

described herein both modifies and extends these previous efforts. As

with these previous efforts, the solutions developed are elastic in nature;

inelastic effects must be accounted for by modifying the elastic solutions ,

*A complete listing of references is given on page 87.
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the web at any transverse cross section 18 not allowed to curve , then the

three displacement degrees of freedom v, w, and B are coupled since, for
small displacements, v ~ aB and w ~~ — ye.

The critical load for tripping is approximated by applying Rayleigh’s

principle. This principle states that for all possible deformations, the

total strain energy V is greater than or equal to the work W done by the

externally applied forces (or by the internal stress field arising from

such forces). As a consequence, it is possible to obtain an approximate

critical buckling stress, one that is always greater than the true

buckling value, by equating the total strain energy and external work,
i.e.,

V — w  (1)

Inherent in the method is the assumption of a buckled mode shape; equating

the energies as indicated by Equation (1) will provide either upper bounds

to the critical stresses or exact solutions in the unlikely event of the

assumed mode shape being exact.
V 

The total strain energy stored in the structure in the buckled state

(neglecting the energy of vertical bending in the flange) is given by the
following expression

V - 

~ ( 

(El v
2 + E~ + GJ + C821 dx (2)

where v and B here refer to the translation of and rotation about the
shear center of the stiffener and the x subscripts indicate pattial

derivatives with respect to x. The strain energy is made up of contri-

butions from (in the order of appearance above) sideways bending, longi-
tudinal warping, torsion, and rotation of the supporting plate structure
modeled as an elastic spring. Since the sideways flexure of the shear

center is coupled to the rotation ~ as indicated,

4
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the sideways bend ing and longitudinal warping terms can be combined to
give

V — -

~~ a 
[E(I 2+I’) 8xx + CJ + C32] dx (4)

In this expression a is the length of the stiffener between transverse

supports, E and C are the Young’s and shear moduli of the material, re-
spectively, and C is the rotational spring constant (per unit length) of

the supporting structure. The coefficients I , s, r, and J are defined in
Figure 2 in terms of the geometry of the stiffener .

Although Equation (4) may be applied to flat bars as well as flanged
st i f feners, it is perhaps more appropriate for thin f la t  bars to use the

V expression for  strain energy derived from thin plate theory, namely

a d(x)

V = -~~ D I {(v ~~ )
2 

— 2( l— v)  Lv v — V
2 ) }  dxd z2 w .j j  xx zz xx zz xz

0 0 V

V + - ~ (5)

where D is the well known plate flexural rigidity (for the flat bar),
V is Poisson ’s ratio , and d(x) represents the depth of the f lat  bar at

location x.

In computing the work W the nature of the external loading will often

dictate the form of the expressions used . When axial end thrusts and/or

moments are applied at the s t i f fener  ends it is usually most convenient to

5
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fT-RL
~~~~~~
J

— Moment of Inertia about the Web Plane

V i — 1.-- (t f 3 + d t 3
z l2~~~f v  v w

s - Height of Shear Center above Toe (Origin)

r d + t  1
+ 

W f I*r d2 LV 1 + (dw/tf)(t /fv)3J 
C

r - Longitudinal Warping Constant

r = !_ (t3d3 + A t3f3)36 W v  4 I v

J - St. Venant Torsion Constant

J — A (~ ~
3 + ~3~~~v w  w f

— Vertical Moment of Inertia about Toe (Stiffener alone)

i ~~~~~~~~~~~ (d 2 + L t2t 3 v u  v f  ~ c 12 1

— Polar Moment of Inertia about Toe

I — I  + 1
p t 2

z — Heigh t of Centroid above Toe

= [-
~ 
~~~~ + fvt f~~C]/[t WdW + fWtf]

Figure 2 — Geometrical Tripping Parameters for Tee Stiffeners
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V compute the component of work done by these forces by integrating the
V product of the axial stresses arising from these forces and the axial

shortening &(y,z) of the stiffener at the point in question, namely,

F W — ó ( y , z) dydz (6)

As the expression suggests, the integration is carried out over the area

of the stiffener end. When the stiffener has lateral loading the above

approach cannot be applied , rather the work done by the internal stress

field arising from the lateral loading is computed according to

d ( x )

= 
~ a 

(0 (v )2 + 0(v )
2 - 2 T v v~~ t dzdx

+ ~ 

a 

[a (v2~~2)] I t dx (7)
2 j x x x  z d  w f

0

where the first integral represents the action of the stress field in the

web and the second that in the flange. When both lateral and end loadings V

are present , the stress fields arising from each set of loads may be

separated and the correspond ing work components computed according to

Equations (6) and (7), as appropriate.

The signs of the term s in Equation (7) differ in some respects from

those found in other references. This is due to the assumption of

compression as a positive stress and tension as negative. (This is quite

conunon in compression instability work.) Figure 3 defines the sign

convention adopted in this report for the a , a , and r stresses and thex z xz
corresponding equilibrium equations which are consistent with Equation (7).

7
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EQUILIBRIUM EQUATIONS 
V

ao atX Xl oax — as

ao at
2 Xl

az ax

Figure 3 - Sign Convention for Inplane Axial and Shear
Stress Components

TRIPPING UNDER END LOADS 
V

Consider a single stiffener of constant cross section and its

associated frame space of plating loaded by an axial inplane force of

magnitude P as shown in Figure 4. The ends of the stiffener will ex— 
V

per ience a uniform axial stress 0
e 
which is related to the cross sectional

area of the st iffener A , the plating thickness t, and the plating

effective width be~ 
as follows,

a —  P — (8)
e A + b ts e

In terms of the stress components in the st iffener , a , a , and t , thisx z xz
translates into

V 8

~ 
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Figure 4a — Axial Force

M(L ])M 
N~~~~~~~~~~~~~~~~~~~~ A

Figure 4b — Constant Moment

1 _

Figure 4c — Uniform Lateral Load

Figure 4 - Geometry of External Loadings

V 

a — a  (9)x e

0 — 0  (10)

t = 0  (11)xz

To calculate the strain energy in the stiffener and the work done by
the axial load , an assumption has to be made for the buckled mode shape.
Because of the repeatability and continuity of typical- ship structure, it
is logical to select a mode shape incorporating simply supported

~~~~~~~~~V _ V___ _ _ _ _ _  ~~~~~~~~~~~~~~~~ V~~~~ 



boundaries , 
~~~~~~~ 

at the ends x = 0 and x = a in addition to the require—
ments for zero displacements (B 0) . Perhaps the simplest choice which
satisfies these conditions is to assume

iuTTx
B = sin — (12)

Substituting this mode shape into Equations (4) and (5) and performing

the necessary operations provides the total strain energy for flanged

stiffeners,

v = -
~~ a ~ [Eu s2+r) (~~fl) + cj (

~
) + (13)

and for flat bars of depth d ,

V 
4~~

D a d  2 (mlr
)

2 

[(
n)

2 
d2 + 6(l_v)] +~~~a 8~ C (14)

The work done by the axial inpiane force is computed according to
Equation (6). The relative displacement of the two ends of the stiffen~r

6 due to its curvature for a fiber at location (y, z) is given by

6(y, z) - 
~ a 

~~ + w~) dx (15)

Since v ~~ zB and w ~~ — ye, this expression transforms to

6( y, z) = 

~ f [Z 2 + y2 ] B~ dx (16)

10
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which , in turn , upon substitution of Equation (12) becomes

&( y , z) = ~ + y 2) 2 ( m l T )
2 

a ( 17)

The work , therefore , is

— 0
e ~~ 

2 
a Jj (~ 2 + y2J dydz (18)

where the integration over the s t i f f e n e r  cross section is carried out at

the point of load app lication . Since

Jj (z~ + y 2 ) dy dz — I~ 
(19)

(see Figure 2) the expression for the work of the external force may be

fur ther  transformed ,

W = ~ ~2 
(~~1L) 

2 
a I (20)

4 n o  a p

Equating the total strain energy and the work leads to the crit ical

elastic value of stress for stiffener tripping . For flanged stiffeners

this stress is

(a) = 

~ [c~ + E(1 12+r) 
~~ 

2 
+ c (~

) 2] (21) 
V~

V:

and for  f l a t  bars ,

11 
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~°e~~re 
— ~ 

D11,d 
[(
~~~
)
2 

d2 + 6(l_v)
] 
+ 

2 
(22 )

where ( fo r  f l a t  bars)

I — -~-~ t d~ + i— dt 3 
~ 

-
~~

- t d3 (23)
p 3 w 12 w 3 w

In actual fact these solutions are exact , as comparisons with

published solutions6 will d emonstrate.  (This is of course subj ect to the

condi t ion s tated earlier of zero curvature v of the stiffener web.)zz
Thus , Equation ( 12) in this case represents the exact tripping mode shape.

When therc is no restraint against rotation , C = 0, it can be seen by
inspec t ion that the lowest buckl ing stress occurs for one wave, in — 1.
When C is nonzero, the mode number for which (a ) is lowest ise cre
dependent on the degree of restraint . Although in takes on only integer

values, the determination of the critical stress can be simplif ied by
se t t ing

~~~e cre — O  (24)

so lving tot  in, and then comparing the tripping stresses for the two integer

values of in which bracket this value. From the above conditions one

obtains

3.14
a l  C 1m -
~~I —2 I (25)
[E(I s +1’) J 

—

for flanged stiffeners, and

1/4
r n . !I 3C 1 (26)iT 

[D d
3
JV

for flat bars.

12 
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It is important to note here that the stress (a ) is a peak stresse cre
at the s t i f f e n e r  location and that when the e f fec t ive  width of the p lating

V b is less than b this stress will be greater than both the corresponding

average stress in the plating o and the mean stress over the total plate-

beam cross section, 0 . These definitions of stress are illustrated in

Figure 5. S ince the mean s tress is f requ en t l y used in design ca lcu la t ions

,
1
’

- 

-

all

AVERAGE PLATE STRESS a - 
V

a b e

A +b t
P~ AN STRESS - 

~~~~~~ 
) °e

Figure 5 — Distribu t ion of Inpiane Stress

13 
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the peak stresses given by Equations (21) and (22) can readily be con-

verted to the mean form according to

~ A +b t\
(a) =1 ~ ~ 1(o ) (27 )m ere ~ A +bt ,~ e cre

‘ S

The distinc tion between peak, average (plate), and mean stresses is a

par t icu la r ly  significant point with regard to tripping since it is the
stress which actually occurs in the stiffener which is critical and the

treatment of (C
e
)cre as either an average or a mean stress can 

1.ead to

very unconservative estimates of the loads required to cause tripping .

For example, current Navy design practice assumes that primary stresses

are distributed uniformly over the total plate—beam cross section provided

tha t these stresses are less than those required to cause plate buckling .

If this is true (and only primary stresses are present) then all the

stresses are identical, i.e., a — a = o . In actual fact , however ,e a in

imperfections associated with real structure will cause a reduction in

plating effectiveness even prior to plate buckling and lead to a nonuniform

distribution of primary stress as Figure 5 illustrates. In this situation

the failure to take into account the fact that the stress in the s t i f f ene r

a is higher than Lhe calculated mean stress 0 could lead to an unpleasante m
surprise since the tr ipp ing stress in the stiffener will be achieved at a

loading somewhat lower than that pred icted by the assumption of uniform

primary stress. The degree to which peak and mean stresses will differ is

a function of plating effectiveness, as represented by the effective width

(and the effective breadth where secondary loads are also present) and the

accurate prediction of stiffener tripping is clearly dependent on the

ab i l i ty  to reasonably estimate this effectiveness.

If the plate—stiffener combination is loaded by a constant moment N ,

as shown in Figure 4b, the stress distribut ion will no longer be constant

over the cross section but rather will vary linearly from plate to flange.

Thus in terms of a,~, c~ , and one obtains

- (~
) (z_h+ 4 t) (28)

- 

14 
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(29)

-t — 0  (30)xz

where I is the vertical moment of inertia of the stiffener and its

V associated effective bread th of plating and h is the corresponding location

of the neutral axis from the midplane of the plating .

If the same mode shape, Equation (12), is assumed , then the ex—

pressions for total strain energy are once again given by Equations (13)

and (14). The work is computed using Equations (6) and (17) leading to

w = 
~~ 

2 
a (~)JJ [z 2 + y2i [z - h + 4 dy dz ( 31)

The integral in this expression is broken up into two parts , one for the

web and one for the flange

f t + y
2
) {z - h + ~ t]

dw 

~~~~~~ 
[z 2 + y2~ [~ - h + ~ t] dvdz

+ 

~~~~~: 

~~~

2

f: 

[z
2 
+ y

2
i [~ 

- h + ~ dydz (32)
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Because the web depth and flange width are typically much larger than the

web and flange thicknesses, these integrals can be simplified by making
certain approximations, resulting in

JJ [z 2 
+ y

2
] [~ - h + ~ t] dyda

— (h — -
~~ t) Jj (z 2+y2) dydz

d ++f

+ J~ z
3 t~ dz + J d(d 2+y2) tfdY

= _ ( h_ i t ) I  + !t d ~~+ d  (d 2 t f  +~~— f 3t )2 p 4 w w  c~~~ c f w  12 w f

= - ~~ I t d~ — 4  (h_ i t) I + 4d  (A d2-I-I )1 E S  (33)4 [ww 2 p c f c  zfj

where ‘zf and A
f 
are the moment of inertia about the web plane and the

cross sectional area of the stiffener flange alone , respectively.  Because

this geometrical parameter will continually reappear in the later sections V

of this report it has been denoted by the symbol S as indicated above.

The above expression is valid for both flanged stiffeners and flat bars

although for  f la t  bars the last term is obviously zero since both Af and

~zf are identically zero .

Making use of this definition, the work done by the applied moment

is given by

16
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As with the case of a concentrated force, the critical moment for
elastic tripping is determined by equating the total strain energy and

the work. The resulting expressions are

Mcre 
= (•

~
•) [E(I Z

;2+r) 
(
!11L
) 

2 
+ GJ + 

~~~~ 

2 

c] (35)

for flanged stiffeners , and

V 

M = (
~

) [~ 
D d  

{(

~~~
)

2 
d2 + 6(l_v)

} ~~~~~~ 

2 
(36)

for flat bars.

For the case of no restraint against rotation (C=O) the critical

moment also occurs for the mode shape corresponding to in 1. When re—

strainr does exist, the critical moment may be found using the same pro-

cedure as that described for constant force loading, and in fact, it is

quite easy to show that the values of m, for which Mere is minimum, are
given by the identical expressions, Equations (25) and (26). It is also

noteworthy that, for all practical considerations, only positive moments

will cause tripping as indicated by Equations (35) and (36). Only when the

neutral axis is located at a significant distance from the plating may a

negative moment be likely to cause tripping and, in this case, the assumed

V deformation used in the preceding development would probably not be
appropriate.

TRIPPING UNDER UNIFORM LATERAL LOADING
Many stiffened plate components of a ship routinely experience lateral

loadings such that the possibility of tripping collapse due to such load-

ings (or at least in conjunction with inplane loading) is a definite

possibility. If this type of failure is to be avoided , it is clear that

the ability to predict tripping behavior under lateral loading is

V 17
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necessary. Since in many design calculations lateral loadings are 

idealized as uniformly distributed, the development which follows assumes 

such a distribution. However, the technique employed is not restricted to 

uniform distributions and can readily be applied to others as the need 

arises. 

The critical lateral load for stiffener tripping is computed in the 

same manner as that for concentrated end loading, that is, t he strain 

energy V is equated with the external work W for an assumed displacement 

function. In this case, however, W must be determined by computing the 

work done by the internal stress field arising from the presence of the 

lateral loading as indicated in Equation (7) . 

For a single stiffener and its associated frame spacing of plating, 

simply supported at its ends, the stress components due t o a uniform 

lateral loading q, (positive in the positive z direction) are as follows, 

T xz 

(J 
X 

1 [ Af ( 1 ) 2 ( {) (a-2x) tw de -h+ 2 t 

(37) 

(39) 

(These stresses can readily be shown to satisfy the equilibrium equations 

given in Figure 3 .) 



Although i t -wou1.d !)~ log1.ca::l.. ro gain adopc Equacian: l2 a& t he 

assmted' d isplaeei!M!rtt' f unet.iotr, expe-r'i.enc~ has" j n.d:1cacad t h.aL ' ue: co t:ne 

coneen:tr<rtioTf o f high (f tress'e8' a round t:h~ midlen.-;., of clle s c:i:ffene£ X e-•" 

t his f unetiort is i n seri ous error w1.c.h r e&peet t o the- a n:e bucxt ee s~ce. 

An i mproved disp~acemen f une i o11 can be nst:ruct:e¢ by in:clud±ng. -ompo

nent of t he ne-xt higher llfO'de a long w1.th t he pri:maTy mode, s p-eei fical.ly . 

\. . ) 

where m i s tne primary mdde rfutnber. This exp-ressimL incCTqJoraces an 

unknown c6efficient K, which, u'l general , may cake on v<rl..ues cret:ween 

appro;<i mately 1 . 5 and 0. Si nce t he a pplicati on of Rayleigh ' s princi.ple: 

produces a boc)(J.ing l oad which i s always greater chan the crue, •Ta.lue, t ile... 

appropri a e value 6f K is lected by minimizing the value o£ ch~ buckling 

l6ad witn tespect t6 K. 
The strain energy xprE!ssions are etermined. by subsc'i.t.ud.ng Rq.uacio.n 

(40)' info Equa i6ft ( '• ) nd (5) and performi ng the necessary operatio.nSo. 

This leads t6 

2 
1/ "' ..!. ~ 82 (~) GJ H (K) 

4 o a m 
( 4-1 ) 

{42) 

f t1t f=ht I:HiU . ttt these xpreRslons H (K) and H (K) are shorthand m m 
HBbiHt:tt ft1t ~uttdtatic fuuc t!uus in t< which are defined as follows: 
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H (K) - {m
2K2 + (m+2) 2 (K—i ) 2 ) + (m4K2

+ (m+2)~ (K—l)
2} (

TT-
)

2
(E) (1i 2+r)

+ {K 2 
+ (K—l) 2 } 

~~~ 

2 
(43a )

ii (K) = 
[(~~~~) 

2 
Cin
4
K2 + (~ +2)~ (K— l) 2 )

+ 6(l-v) {m 2K2 
+ (m+2 ) 2 (K-i) 2 )

+ 
~~~ 

2 
2 
+ (K_ l) 2

)] (43b)

The work W done by the internal stress field is calculated using
Equation (7), giving

= 1 

~~ 
8
2 r2 a S F (K) (44)

where once again, for reasons of convenience, shorthand notation is used
to represent a quadratic function in K, namely

F (K) — in
2 K~ (i_ 

~
2
~ 2) 

+ (m4-2) f ~.

+ 
1 

2 K( i—K) + (m4-2)2 (K—i) 2 
(1(m+l)

- 

~
2 (~~ 2) 2 

} 
~~~~~~~~ 

~~~~~~~~~~~~ 
.
~~ t) + bet 2

h] (K 2

+ (K—i) 2 ] (4 5)

L _ _ _  
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Equating the strain energy and the work , and then solving for q
results in the critical value of the lateral loading . For flanged
stiffeners one gets

I2IGJ H (K)
= — 

2 ‘ F (K) (46)
Sa in

and in a similar fashion for flat bars ,

4IdD H (K)
— 

Sa2 F (K) (47)

The above expressions for q contain the parameter K whose value atcre
this point is still unknown. As previously mentioned the appropriate
value of K is determined by minimizing the value of with respect to K.
This process is routinely carried out by setting the derivative,

0 and solving for K.
In the above expressions for q ,  the K terms only appear in the

V 

H (K)/F (K) and i (K )/F (K) ratios. Since the H’ s and F’ s are quadratic
functions, they can symbolicall y be represented in the form

H (K) h0 + h1K + h2K
2 (48a)

F (K) f 0 + f
1

K + f 2K2 (48b)

It can readily be shown that setting the derivative aq~~~/aK equal to zero

V leads to a third quadratic equation in K,

(h1f 2 
= h2f1]K 2 

+ 2[h 0f 2 - h2 f 0]K + [h0f1 
- h1f 0] - 0 (49)

21
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the solution of which provides the value of K for which H (K)/F (K), and

hence , is a minimum. The above equation being quadratic, usually
two distinct values of K will result. The appropriate choice of K,

however , is usually quite obvious as is discussed later in Appendix A in

connection with the illustrative examples.

The expressions for H (K), 14 (K), and F (K) as given by Equations (43)

and (45) are not in the form required for the determination of K according

to the method represented by Equation (49). These expressions have been

rearranged , however , and the forms most appropriate for use with Equation

(49) are presented in Appendix B.

If the ends of the stiffener and its associated frame space of plating

are clamped rather than simply—supported , the stress components due to a

uniform lateral loading q are as follows,

= 4 (~
) (x2_ax) (z

_h+ 4 ~) + 4~ (~
) a2 (z~h+ 4 ~) (50)

a = - 

~ 
[A fZ 

~
dc
_h+ 4

+ z 

~4 d2 - -~~ 2 
+ (h_ 4 t) (4 z_d

~ )}] 
(51)

T = 4 (~) (a—2x ) [-~! (d _h+ 4 t’)

+ 4 d2 - 4 + (h_ 4 t~ (Z-d )] (52)

If Equation (40) is again selected as the assumed displacement

function , then the strain energy expressions are the same as for the

simply supported case, namely Equations (41) and (42).  The expressions

for the external work, however, will not be identical since the stress

22
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component is different. The differences are entirely within the definition

of the function F (K) , however , so that Equation (44) is valid for the

clamped condition with F
m

(K) now def ined as

F (K) — — 

~~~~~ 
K2 

+ -~~~~ (m+2) 
{ 

+ 
2 } K(l—K) — 

~~~~~ (K—i )~

— 

~~~~~~~~ ~~ (d~.-h+ 4 t) + bet2h] (~(2 + (K—i)2] (53)

Using this definition of F (K) the critical value ~~~~ may be computed
using Equations (46) and (47) and the procedure previously outlined to

determine the appropriate value of the parameter K. The expressions for

the “clamped” version of F (K) in the format which is symbolically

V 
represented by Equations (48) is also provided in Appendix B.

COMPARISONS WITH NUMERICAL SOLUTIONS

To demonstrate the application of these solutions and to shed some

light on their approximate ranges of validity , several comparisons were

made with solutions obtained by the finite element method , specifically
V 

with a program developed and documented at the University of California.7

Both a flat bar and a tee stiffener configuration were considered, the

proportions of which are provided in Figure 6.

Because of the symmetry of the structure and its response, it was

necessary to model only one—half of each stiffener for the finite element

analyses. A uniform mesh consisting of 10 rectangular plate elements in
the x—direction and 8 elements in the z—direction was employed . The flange

of the tee stiffener was modeled by an additional 10 bar—type elements.
Although assumptions inherent to the finite element method mean that so—

lutions obtained using the method are themselves approximate, the moder-

ately fine mesh employed here can be expected to produce results which are

at most a few percent different from the so—called theoretically “exac t”
values.

23
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II
*_ 0.B3S cn, d d

~~
.1S cm

~~~

b, 30 cm

FLAT BAR STIFFENER — . - 100 cm

7 50 cm

tf
_ 1.4

~~~~1I
t.. - 0.722 cm -1J I.— d - 15.75 cm

14.33 cm

- 

- ~~ 
- r- - 

A

I hm5.47 cm

-, -

4 b,.30.Scm

TEE STIFFENER — a — 150 cm

Figure 6 — Stiffener Geometries for Comparative Solutions

Tables 1 and 2 provide buckling stress , moment, and lateral load
coefficients for the first two modes for the case of zero rotational re-

straint at the stiffener base, i.e., C = 0. For the cases of axial end

load and end moment agreement is, in general, very good between the finite
element and energy solutions. For lateral loading, the agreement between
the two methods of solution varies from very good to very poor, with the

_  
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TABLE 1 — TRIPPING STRESS COEFFICIENTS UNDER END LOADS V

AND MOMENTS (NO ROTATIONAL RESTRAINT)

Flat Bar V

Tripping Stress [(cYe)cre/E] x lO~
Mode Coefficient
in _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _

Finite Element Eqn. (22)

1 6.44 6.42

2 7.58 7.51

Tripping Moment [M (d_1~+ 4 t) x io4] / [IE]
Mode Coefficient cre

in

Finite Element Eqn. (36)

1 9.04 8.99

2 10.66 10.52

Tee Stiffener

Tripping Stress [(O e)cre/E] x 1O~
Mode Coefficient
in

Finite Element Eqn. (21)

1 26.4 26.3
• 2 65.9 72.6

Tripping Moment [Mcre (d0
_h+ 4 t) ~ io4] / [tElMode Coefficient

m ___________________________ _________________________

Finite Element Eqn. (35)

1 29.4 29.0

2 75.1 80.1
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TABLE 2 — TRIPPING LOAD COEFFICIENTS UNDER UNIFORM
LATERAL LOAD (NO ROTATIONAL RESTRAINT)

Flat Bar

-
~~

Mode Tripping Load 100 El 
2

B.C.* Coefficient
in

Finite Element Eqn. (47)

1 SS — 1.13 — 1.12
2 SS — 1.20 — 1.18 - V

1 C + 1.76 +1.96

2 C + 3.18 + 3.90

Tee Stiffener

a2(d —h+ -
~~~c 2Tripping Load 100 qMode cre ElCoefficient

m

Finite Element Eqn. (46)

1 SS — 4.59 — 5.20
2 SS — 9.03 —10.09

1 C + 6.54 +7.91

2 C +17.91 +40.76

*B.C. = Boundary Conditions, SS — Simple
Support , C = Clamped .

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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flat bar simply supported showing the best agreement and the clamped tee

stiffener the worst. If restraint is added along the base of the stiffen—

ers the discrepancies between the two methods consistently grow as the
amount of the restraint is increased . This trend is clearly illustrated

in Tables 3, 4, and 5 where buckling coefficients are tabulated as a

function of a dimensionless restraint coefficient R , def ined asc

2

mit 
2 (54 )

GJ + E(I
~
s2.Ir) (~ )

for  flanged s t i f feners, and

R = 
____________________________ 

— (55)c 

~ 
D d  
[

~~~~it )

2 

d
2 
+ 6(l_v)]

for f la t  bars.

If the finite element data is examined in more detail it becomes

quite apparent that the primary cause of the discrepancies noted above is
the presence of web deformations . To prevent overly optimistic buckling
predictions, Faulkner in his work3 suggested an upper limit on the value
of C used as follows,

2Ca <~~0 (56)
It GJ

For the tee stiffener cited here, however , this corresponds approximately
to a value of R

c 
= 4.1 (for rn—i) and from the data presented in the V

tables, the above limit itself would appear to be overly optimistic .

While the lack of consideration of web deformations appears to be

the primary cause of the discrepancies noted in the tables, a possibly

_ 
- . ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - - L
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TABLE 3 - TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END

LOADS AND MOMENTS WITH ROTATIONAL RESTRAINT

Flat Bar

Tripping Stress 
~~°e~Cre 

x 104]/E
Mode 

R Coefficient
m c _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  -

Finite Element Eqn. (22)

1 0 6.44 6.42

2 0 7.58 7.51

3 0 —— 9.33

1 2.0 17.6 19.3

2 0.427 10.5 10.7

3 0.153 10.9 10.8

1 10.0 41.2 70.6

2 2.14 16.9 23.6

3 0.764 14.1 16.5

Tripping Moment [Mere ~~~~~~~~~~~ 4 > io’~] / 
[IE]

Mode Coefficient
in C - ______________

Finite Element Eqn. (36)

1 0 9.04 8.99

2 0 10.66 10.52

1 2.0 24.3 27.0

2 0.427 14.6 15.0

1 10.0 55.2 98.9

2 2.14 22.8 33.0
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TABLE 4 - TRIPPING STRESS COEFFICIENTS FOR TEES UNDER END
LOADS AND MOMENTS WITH ROTATIONAL RESTRAINT

Tee Stiffener

V Tripping Stress 1
~°e~cre 

x l0
4] /E

V 
Mode R Coefficient

m c _______________ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

Finite Element Eqn . (21)

1 0 26.4 26.3

2 0 65.9 72.6

1 0.826 45.3 48.0

2 0.0748 73.3 78.0

1 1.65 56.4 69.7

2 0.150 77.7 
— 

83.4

1 4.96 75.5 156.6

2 0.449 85.6 105.2

1 8.26 82.7 243.5

2 0.748 88.6 126.9

Tripping Moment [Mc e (d~
_h+
4 t) ~ io4] /EIE ]

Mode 
R 

Coefficient r

m C

Finite Element Equ. (35)

1 0 29.4 29.0

2 0 75.1 80.1

1 0.826 49.7 53.0

2 0.0748 82.1 86.0

1 1.65 61.4 76.9

2 0.150 86.3 92.0
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TABLE 5 - TRIPPING LOAD COEFFICIENTS UNDER UN I FORM LATERAL LOAD
WITH ROTATIONAL RESTRAINT
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significant source of error for the case of lateral loading, par t i cu la r ly
positive pressure , is the distribution of out—of—p lane displacements in
the x—dlrection as defined by Equation (40). The presence of this source

of error is most detectable in these examples for flat bars having zero

rotational restraint about their line of attachment since , in this

situation , little if any distortion of the web occurs and , therefore , the

lack of d o  ~i’ agreement wi th the finite element results cannot be ascribed
to the neglect of web deformation.

Desp ite these dis crepanc ies noted , Equ ation (40) does a good job ,

qu a l i t a t i v e ly at least , in describing t he  t r ipping phenomena for  modes

m I and in 1 when rotationa l restraint is nonexistent or very small.

As rotationa l restraint increases , the tri pp ing patterns become In-

creasingly complex and soon this comp lexity reaches a st age wher e it is

exceed ingly difficult to assoc iate a specific mode number with a particular

buckling pattern , as the question marks appearing in Table S ind icate.

This is due to the concentration of tripp ing deformations in the regions

of the stiffener undergoing compressive loading , with strongly attenuated

or no deformations at all in those reg ions experienc ing tension . Thus,

tri pp ing deformations under negative lateral loading will tend to be

concentrated in the midsect ion of t I1t~ stiffener while those associated
V with positive lateral loading will be concentrated at the two ends. Lu

fact , for positive lateral load ing and practical geometries (assuming there

is suffic ient vertical fixitv to produc e reg ions of compressive stresses)

there are effec tively only two buckling modes, one symmetrical and the

other antisymmetrical about the stiffener midpoint . As the- degree ot

rotat ional restraint lncre.-iscs , the deforma t ions assoc iated wi th  both

modes become more and more concentrated towards the ends until tot - large

deg rees of restra int ( p a r t i c t i l a i - l v  f o r  long stiffeners) the buckling

p a t t erns may be completel y localized in the compr ess ion reg ions. As the

buckling patterns become more loca l i zed , the co rr espondi ng tripping loads

approach a common value. Consequently , for long stiffeners (large a/d)

w i t h mode ra t e  to h ig h rot at tonal r e st r a i n t , the t r i pp ing load for  both

modes are effect ively ident teal with the moth’ shapes essen t ially dii tering

only with regard to their condit ions ot symmet ry .
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Th. rapidly deteriorating accuracy of the tripping solut ions described

in this section as rotational restraint increases, clearly indicates, even

though based on very limited geometries and data , that these solut ions ar e

at best suitable for  problems with  zero or very l imited amounts of such

restraint. Because of the number of variables involved , parametric studies

would be required to effectively define the degree of rotationa l restra int

below which an acceptable level of accuracy could be guaranteed . Since

the use of finite element programs in such stud ies can present significant

economic stumbling blocks , an a l t e rna te  approach was adopted which led to

the development of approximate analytical solutions which take into account

web deformations and are sui table  fo r  e i ther  hand ca lcu la t ion  or programming

on desk—top computers. These solutions are described and evaluated in the

next section. Unfortunately these solutions are available onl y for the

cases of axial end load and constant moment , and not fo r  lateral loading .

Consequently, semiempirical solutions will probably have to be developed

for tripp ing under lateral b i d , making use of the analytical work pre-

sented here, finite element results, and any other relevant data available ,

at least until an improved analytical solution for this particular load ing

case is developed .

EFFECTS OF WEB DEFORMATIONS

In the prev ious development the crit ical as8umption was made tha t  the

centerline of the web at any transverse cross section would not curve ,

i.e., for small deflections, v ~ z~ . As the  selected finite element so-

lutions have demonstrated , however, this assumption in certa in circum—

stances can lead to buckling predictions which are considerably higher than

the true values. Since the proportions of the two stiffener examp les

stud ied are not untypical of ship—type - structures , it is clear that  so-

lutions which take into account web deformations would be most valuable.

If the web is allowed to curve, then fur small deformat ions the dis—

placement of any point on the centerline of the web can be described in

terms of a translation v and a rotation ~~. If a deforma t ion func t ion is

assumed for the web, then the displacement of any point on the web

-----— - V V - ”-V -- -- -- Vrn_ V1~~
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V 
centerline can be described in terms of the v and t3 of a single chosen

point , in this case the shear center, as shown in Figure 7. (In the

following development the location of the shear center is assumed to be

at the intersection of the web and flange centerlines , i.e., s~~~d ,, and

although only approximately true, the shear center is indeed very close to

this point for stiffeners with f langes of typical proportions and the
consequences of this approxima tion are insignificant.) A log ical deforma—

tion function is that of a beam , cantilevered at one end (the flange end)

I

~1_____ S 1- —

V —~

V — 
— 

— — I — — 
—

~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

+ 

~
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~~
_ 
l ) + R~~~~(l~~~~~ )2~~

dC l~

]

Figure 7 — Characterization of Web Deformations
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and loaded by a concentrated force and moment at the other (corresponding
to the restraining force and moment generated by the plating to which the
stiffener is attached). In terms of the v and ~ displacements of the
shear center this assumption gives the following expression for the lateral
displacement v of any point on the stiffener web,

v
w [ _ (

3_~~~ )_ 3R~~
_
(l_ ~~_.)2 Jv

c d
c c c

1 2  \ 1
+ 

~
—
~~~ - _ l )+R~~~~(1_~~~~

) 
d
~ 3 I (57)

C\d c C \  c 
- j

where

C d
c

4D

c
W
d
_ 

(58)
l +~~-~~

The strain energy stored in an element of the web due to it s  deforma—
V tion as described by Equation (57) is given by

dV = i ( 3 D
) 
[1+3R2 v2 — 2(l+R 2)d

c
V
~
3

+ (i+ -
~~ R2) d~B2J dx (50)

The total strain energy stored in the structure in its buckled state
is thus
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~ a 

[EI~
v
~~ 

+ E& + GJB~

3D
+ cy2 + ~-~ fL (l+3R2) v2 — 2(l+R2)d v~

d 
c

+ (i + ~ :2) d
2
8
2 dx (60)

where y is the rotation of the stiffener base (and thus the elastic

spring) as shown in Figure 7. It is not difficult to show that 
V

V 

1 
(3 

~~~~~ 

(61) 1
2 (l+~~~~)

and , therefore, V completely in terms of v and ~ is given by

= f 
[~~~~~~

+ Er8~ + GJ8~ + R( l-R) (
~~
2_6d

~
v
~~~~~

2
)

+ ~~~ t(l+3R
2 ) ~2 

- 2(l+R 2 ) d
~

v
~ 
+ (i+ ~ R2) d

2
~ 2}] dx 

V

C (62)

If the stiffener is loaded by an ax ial inplane force , the potential —

energy of the loading in this case is the negative of the work done by

that loading , namely

— - W - - 
JJO~ 

6(y, z)dy dx (63)
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Substituting V
w Iz_ d v and w — y

~ 
for the flange , w - 0, and the

deforma tion f unction v
w for the web into Equation (15) for cS (y, z) leads to

- - ~ 

a 

0e EtA s 
- d t  + R- 

~~~ 
R2) } ~

— 2 {d
2
t (

~
-
~ 

- th R+ ‘ R2) }
+ { I - d3t (4~ 

+ ~~~~~ R— ‘ K2) } dx (64)

where ~~~ is the polar moment of inertia of the stiffener about its shear
center. This quantity can be computed from according to

I — I  + A d 2 — 2 A d  z (65)
PS p S c  S c

where z is the height of the sti f fener ’s centroid above its toe.

The total pntsnttal  energy is the sum of the expressions (62) and
(64),

U — V + U ~, (66)

and it can symbolically be represented by an integral of the form

u — 
J 

O(x ,v ,$,v ,8 ,v ,$ )dx (67)

The theory of stationary potential energy requires the integral in

Equation (67) to be a minimum . This leads to two Eulerian differential

equat ions,
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2
, L~ + L,r~~~ — 0  (68a )

v dx v dx ’ V

V 

2
V 

— 
~~

—. 
~~~~ 

+ 
~~

—
~~

- 

~
-t3 

— 0 (68b)

V 
x dx xx

where the subscript indicates a partial derivative with respect to that

parameter.
Carrying out the operations indicated by the above expressions and

assuming solutions for v and ~ of the form

m~1x mlixv — v sin — and ~ — ~~ sin — (69)
V 0 a o a

leads to a set of two homogeneous equations for the constants v0 
and

Nonvanishing solutions for v0 and can only exist if the determinant

of the coefficients of these equations is zero. Computing this determinant

results in a quadratic equation for the critical buckling stress, ( O ) e~

(Cle)
~ re (k 2 k4 —k~ ) + ( o )  (k1k4+k 2k3— 2k 5k6) + (k1k3—k~ ) — 0 (70)

where the k
s
’s are given by

— El 
~~~~~~~~~~ 

2 
+ 

2 
(1+311) (7la)

k2 
- - A9 + d t  (

~ 
+ R- ~~~ 112) (7lb)

V k3 - GJ + Er (
~~~
)

2 
+ ~~~ 

2 
(1+ ~ R) (llc) 

V
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— — I + d 3
t (~~~÷ L R.~~~L R2) (71d )

k
5 

- - 

3D

) 

2 
(l+R) (71e) 

V

k6 - d~ t (4~ 
- R+ 

~~~~~~~~ 
R2) (llf)

Using a similar procedure the critical load for t r ipping under
constant moment can also be determined . This leads to a quadratic equationsimilar  to Equation (70) for  the cri t ical  moment M , namely

—
~~~~~ —2 

~~~~

—

~~~~~~~~~~~~~~~~~~—- __ 
—2M (k

2k4—1ç6) + H (k1k4+kk...2k k )  + (k
1k3—k5) 0 (72)

The k
s
’s are closely related to the k~ ’s defined above, as indicated below,

V 

~ =( ‘— \ k  (73a )1 
\d —h+!t J  

1
c 2

(73b)

~ -( ‘-
~~~~\k (73c )~ kd -h+’tJ ~c 2

4

k4 
= k4 + 

d
~
t 

(29 - R + ~~~ R2) (73d )
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~ 
— ( I (73e)

~ d —h+ — t
~~c 2

d 3t
(73f)

Although the logic is clearly less soundly based , the web deformation
function described by Equation (57) can also be applied to the problem of

the tripping of flat bars. In this case, v and 8 represent not the dis-
placement of the shear center , but rather that of the outer extremity of
the flat bar. The strain energy is given by V

a d
V — ~~~ D I I {[(v ) +(v ) ]

2
2(l ) [ (  ) (v ) — (v )2 ]}dxdz2 w j  j  w x x  w z z  wxx w z z  w x z

0 0

+ 
i -j R(l-R) (9v 2-6dv8+d 282 )d x (74)

0
d

while the potential energy U is identical to Equation (64) with the

parameter d replaced by the flat bar depth d and I replaced by the polar 
V

c P8
moment of inertia of the flat bar about its outer extremity (= 1 d 3t ) .w
The procedure followed to determine the critical stress is the same as

that described previously and results in a quadratic equation identical to
Equation (70) . However , in t his case , the kj ’s are defined as follows : 

V

— ~~~~~~ 
2

[

~ 
(1+311) + 

~~~~~~ 

2 
(4—R+R 2)

(75a )
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k2 — — dt 
[4~ 

— R+ 
~~ 

R2+ 
~~ 

(4— 11-fR2) (t~ /d) 2] (75b)

k3 — D d ( V ~~a )[ ~~~~ (3+R)+ -~~~(!~) (6~ 3R+R2)

(7 Sc)

k4 — — d 3t [r~ 
— 

~~~~~ 11+ -
~~
-
~~~~~ 112+ 

~~~ 
(6—3R+R2) (t /d ) 2] (75d)

- - D(!a) [.1~
. (l+R)+ (~~~) (*+v_ .

~~
R

(75e)

k
6 = + d2t [4~ 

— R+ -j-
~~ 

112+ -r~•~ 
(2—2R+R 2) (t /d)2] (7Sf)

For a constant moment , Equation (72) is applicable. In this case,

however , the functions are related to the k~ ‘s defined as Equations
(7 5a—75f)  as follows :

= ( I k1 (76a) V

\d_h+~~~tj

k2 - k2 + 
d 

d2t 

~ ~ 

- R+ ~~~ R
2

~~~~~~~~~~~~~~~~~~~~ (t~ /d ) 2] (76b)
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k — f I 
i \k3 

(76c )
d-h+ t /

4

- k4 + 
d 

d t  

~ 

- 

i~~o 
11+ -

~4~ 
R~

+ 
~~~~~ 

(-
~ 

— 11+ f~ 
R2) (t~/d)2] (76d)

I
1 

‘
\k5 

(76e)
t /

k
6 

- k6 - d 

d 3t 

~ ~~ ~ 
- R+ ~~~ 11

2

+ -
~~

(-
~

- — -
~~~~~ R+ f~ 

112) (t /d)2] (76f)

While these solutions for flat bars are approximate, they have the

advantage of not requiring an iterative solution (if be 
and C are known) .

An “exact” solution for end loading exists based on thin plate theory.
The critical stress is determined from the solution of the equation 

V

(c
1 cos 8d + c2 cosh c~d + c

3
c
2 

sinh ctd l [c 2 8 cos Ba

+c
1 8 cosh~~d ]—  [—c 2 8 sin $ d+c 1

a sinh od

+ c
1
c
3 
a cosh ad) [ci 

sin Bd + c2 sinh ad] — 0 (77a) V

where, in this case
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a (— ) +~ /— (— )y D

- 82 +

(77b)

22c —cx - v i —2

and

1 2 2
c — i— —  D3 \ ctC w

The obvious problem with this approach is that an iterative solution of a

transcendental function is required , thus effectively eliminating it as a

practical tool for hand calculation. Solution by computer is quite

straightforward , nevertheless the necessity of an iterative solution may

still be a serious drawback particularly in computer oriented design

synthesis programs . Several levels of iterations may be required in such

programs, thus resulting in the need for a single critical stress to be

evaluated literally hundreds , or even thousands of times. In contrast ,

the solutions represented by Equations (70) and (72) are not inherently

iterative by nature , and although admittedly cumbersome, are suitable for

hand calculation. Even when the assumption that certain parameters,

usually be and/or C, are load dependent requires an iterative solution ,
the manual use of these expressions is possible.
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While solutions which take into account the influence of web

deformations are available for the cases of axial end load and constan t

moment, unfortunately such solutions do not presently exist for the case

of lateral loading as previously indicated . The difficulty is primarily

due to the variation of a wi th  x and the inadequacy of a single sine

f unction to represent the buckl ed shape. The lack of a solution for this

particular loading case is particularly bothersome since the lim ited data

presented in the previous section suggests a significant influence on

buckling strength by web deformations. This problem is presently being

investigated.

Using the same configurations previously discussed (see Figure 6), a

series of comparisons were made between the solutions which include web

deformations and those which do not . The results of these compar i~,ons are
presented and discussed in this section.

Tables 6 through 9 present buckling coefficients for both tee and flat

bar stiff eners of constant length with varying degrees of rotational

restrain about their toes. £hese tables clearly reemphas Vze behavior that

was noted in the previous section, namely the increasing significance of

web deformations on buckling strength as rotational restraint increases.

These tables also indicate excellent agreement between the finite element

solutions (the numbers on the tables in parentheses) and the approximate

solutions represented by Equations (70) and (72) for all the degrees of

V restraint considered. With regard to the tee stiffener configuration,

however , ~t is quite noticeable that for small or zero rotational
restraint, Equations (70) and (72) predict somewhat lower (by several

percent) buckling coefficients than do the finite element solutions. It

would appear that this may be primarily due to the fact that In the

finite element model the flange of the tee is modeled by a bar, which is a
one—dimensional line element. Consequently , on computi ng the work W of

the external forces, the finite element method is unable to include the

effects on the parameters I and S (see Equations (20) and (34)) of the

finite width and thickness of the flange. As the degree of rotational re-

straint increases, the data strongly suggest that the influence of this

approximation decreases in significance.
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TABLE 6 — TRIPPING STRESS COEFFICiENTS FOR TEES UNDER END 1.OAI)S - -

WITH ROTATiONAl, RESTP~ 1NT

ii’t ~ Si. i t  I i~nt ’r

Fr 1 pp Ing St re’ss I ) ‘ I 0~ / i-:
CO(~1I t t ’ t L~fl1 ~ c rt’

E q u .  ( 7~ )* l~in. (21)

1 0 14. 1 (.!b.4) 2 6 .

2 0 65. ( t~~. ~)) 7 2.  ~

1 0.82~ 41 . (45. 1) 48.0
1 (1.0/5 73.1 (71.3) 78.0

1 1.65 54. (6.4) 69.7

2 0.150 77.6 (/7.7) 83.4

1 4.% 11 .4 ( i , . 5)  156.6
2 0.449 85.4 (8 .6) 105.2

I 8.1t 80.4 (82.7) 243.5

1 0.748 88.3 ( 138.6) 126 . ‘1

1 1 5 .0  So . 3 420 .7
1 1.36 ‘JO. ’) 17 1 . 2

*F t g u r t s~ in parL.ntht’~t’~; nrc I m ite element
v.t Iue~- .
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TAM E 7 — TRIPPINC LOAD COEFF iC IENTS FOR TEES UNDER END MOMENTS
WITH ROTATIONAl. RESTRAiNT

1’ee St it fene r

i’i.- t ppin~( Moment Ll~t,~.re ~~ — It + ~, 

~
) ~ io~

’ 
j / ( 1  F)

R t - o c t t i~ .tcnt

___________ 

Eqn. ( 1 2 ) *  Eqn .  ( 3~~)

U ~7.1 (2~ .4) 29.0

2 0 / 4 . 6  ( 7~~.l )  80.1

0.826 4 7 . 7  (4 9 . 7 )

I O.O/  8 1. 7  (8.~. 1)  86.0

3 1.~~ 5’-). 3 (61.4) 76.9

2 0.150 85.9 (86. 3) ‘-12 .0

3 4.96 78.9 372.8

2 0.44 ’) 3 . 3  116.0

268 .6

V 2 0.768 ‘-15 .8 I 3’ .’-)

15 .0 ‘).‘.O 464.0

2 1 . lb “8 . 2 188 .8

~~~g ir *~~ In parentheses ar e I m it t ’  element va1~ie&~.
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TAULE 8 — TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END LOADS
WITh ROTATIONAL RESTRAINT

Flat Bar

Tr ipping Stress 
~~
°e~cre 10

4
J/E

Mode Coefficient
m c _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _

________ _________ 

Eqn. (70)* Eqn. (22)

1 0 6.42 ( 6.44) 6.42

2 0 7.51 ( 7.58) 7.51

1 1.00 12.44 12.84

2 0.214 9.10 9.12

1 2.00 17.6 (17.6) 19.3

2 0.427 10.5 (10.5) 10.7

1 5.00 29.3 38.5

2 1.07 13.6 15.5

1 10.0 41.5 (41.2) 70.6

2 2.14 17.0 (16.9) 23.6

1 15.0 49.1 102.7

2 3.20 19.1 31.6

*Figures in parentheses are finite element
values.
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TABLE 9 - TRIPPING LOAD COEFFICIENTS FOR FLAT BARS UNDER END MOMENTS
WIlE ROTATIONAL RESTRAINT

Flat Bar

Tripping Moment [M ~~~ 
-
~~ ~

) 1O~] / (IF)
Mode 

R Coeffic ient
m C _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _

________ __________ 

Eqn. (72)* Eqn. (36)

1 0 8.99 ( 9.04) 8.99

2 0 10.50 (10.66) 10.52

1 1.00 17.2 18.0

2 0.214 12.6 12.8

1 2.00 24.2 (24.3) 27.0

2 0.427 14.4 (14.6) 15.0

1 5.00 39.6 54.0

2 1.07 18.5 21.8 
—

1 10.0 55.3 (55.2) 98.9

2 2.14 22.7 (22.8) 33.0

1 15.0 64.8 143.9

2 7 .20 25.3 44.2

*Figures in parentheses are finite element values.
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It was noted in the previous section that not only degree of ro—

tational restraint but also stiffener proportions can influence the

amount of web deformation which will be present. An example of this is

illustrated in Table 10 where tripping stresses have been calculated for

the tee stiffener of Figure 5 for varying lengths. It may be noted that

as the length—to—depth ratio decre.hes there is an increasingly large

discrepancy between the values of the tripping stresses predicted by

Equations (21) and (70) , indicating an increasing role of web deformation.

As has been noted ,
6 tripping for very short lengths is characterized by

deforma t ions consisting mainly of buckling of the web and twisting of the

flange about its centerline. This -is clearly a local buckling phenomena
and its presence is indicated in Table 10 by these cases for which large

discrepancies exist between the finite element results and those of Equa—

tion (70). These discrepancies occur because Equation (57), while an

excellent approximation to the deformations which occur in the web during

tripping, is a somewhat less than ideal approximation for local buckling of

the web. Thus, while Equation (70) has been demonstrated to be reliable

for predicting the primary tripping of tee stiffeners, it seems clear from

this example that the possibility of local web buckling must be investi-

gated by other means, such as plate theory.

For tee stiff eners, other geometrical parameters besides a/dr 
can

influence the amount of web deformation present. In a qualitative sense,

the most significant factor involved seems to be the relative stiffnesses

of flange versus web, since a stiff flange will tend to resist deformation,

therefore, forcing more into the web. Many details of geometry can in-

fluence this ratio and thus, no further attempts will be made to examine

them here. However, Table 11 illustrates the influence of length on

degree of web deformation when there is no flange. The absence of any

significant influence of length on tripping in this case in essence

supports the hypotheses of the importance of flange versus web stiffness

relative to web deformation.
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TABLE 10 — TRIPPING STRESS COEFFICIENTS FOR TEES UNDER END LOADS WITH
VARYING LENGTH/DEPTH RATIOS (NO ROTATIONAL RESTRAINT)

Tee St i f fener

Tripping Stress 
~~°e~Cre 

x l04]/E
Mode Coefficient
m md

C Eqn. (70)* Eqn. (21)

—— 1.99 320.4 (193.1) 449.8

2.66 217.4 (188.2) 257.7

—— 3.99 107.8 (105.2) 120.6

4.06 104.7 (102.5) 117.0

—— 5.32 65.5 ( 65.8) 72.6

7.48 38.3 42.1

—— 8.11 34.2 ( 35.8) 37.4

10.64 24.3  ( 26.4) 26.3

—— 14.96 17.6 18.7

16.62 16.3 17.2

-- 33.24 12.2 12.4

*Figures in parentheses are finite element
values.

0
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TABLE 11. - TRIPPING STRESS COEFFICIENTS FOR FLAT BARS UNDER END
LOADS WITh VARYING LENGTH/DEPTH RATIOS (NO

ROTATIONAL RESTRAINT)

Flat Bar

Tripping Stress kae)cre 
x 10

4]/ E
Mode a Coefficient

m md _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _

_ _ _ _ _ _  _ _ _ _ _ _ _ _  

Eqn. (7O)* Eqn. (22)

—— 1 20.3 (20.0) 20.3

2 9.61 ( 9.51) 9.61

-- 3.12 ( 7.47) 7.51

4 6.95 ( 6.92) 6.95

—— 5 6.62 ( 6.61) 6.62

6.25 6.42 C 6.41) 6.42

—— 7.5 6.31 ( 6.30) 6.31

10.0 6.20 ( 6.20) 6.20

—— 15.0 
- 

6.12 ( 6.12) 6.12

30.0 6.07 ( 6.07) 6.07

*Valueg in parentheses from Equation (77).

~~~ 

_ _  
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V TRIPPING UNDER COMBINED LOADING
The treatment of tripping to this point has considered both inpiane

and lateral loadings , but only applied individually. In many practical

situations such loads will occur simultaneously which naturally leads to

the subject of tripping under combined loading.

One approach to this problem is to follow the same procedure used for

the individual loading cases, that is, to equate the strain energy

associated with the assumed deformation function to the work done by the

external loads. In this case, however , the work will include contributions

from all the simultaneously occurring loads. One stress (or load) is then

solved for (usually the predominant one) and thus becomes the tripping

stress (or load) “in the presence of” the other applied loads.

As an example, consider the case of a tee stiffener loaded by both an

axial end load and a uniform lateral load. Since a lateral load is present,

the displacement function represented by Equation (40) must be used. The

strain energy associated with this displacement function has previously

been computed , but is repeated here,

2
V -

~~ a 
~~ 

(-
~

) cj H (K) (78)

for convenience. The work done by the lateral load has also been previously

det ermined ,

W
q 

— 

~~ (
-?‘) ~~ ~

2 a S Fm
(K) (79)

but here it is represented by the symbol Wq 
to indicate it is the component

due to the lateral load. Equation (20) gives the work done by the axial

end load for the assumed displacement function given by Equation (12);

for displacement Equation (40) the appropriate work expression becomes

— 
~e ~~ 

2 
a I [m

2X2+(m+2) 2 (K-l)2] (80)
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The total work is the sum of the two components ,

W - W  4 WP q

* 
a
e 

2 (11
) 

2 
a I [m2K2+(m+2)2 (K—l)2)

- 
1 (

~
) ~2 ~2 a S F (K) (81)

Equating the total work and the strain energy defines the condition

of loading at which tripping will occur. If the axial end load is assumed

to predominate, then carrying out the above procedure and solving for 0
e

produces the following:

2
GJ H (K) + s— 

(
9!_) S F (K)

(a )  — —  m 12 1 m (82)e cre 
I~~m

2
K
2+(m+2)2 (K—i)2)

As in the case of lateral load alone, the parameter K must be selected so

that the resulting value of (a ) is the minimum. Since both thee cre
numerator and denominator of Equation (82) can be represented as quadratic

functions of K, the procedure previously described for computing the

appropriate value of K can also be applied here.

A second approach for computing tripping under combined loading in-

volves the application of the so—called “interaction” formula. In this

approach, for the type of loads considered here, tripping is assumed to

occur when the following condition is satisfied:

+ 
[M ]  + [q ~~~~

]
~ - 1 (83)
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In this expression (a ) , M , and q are the failure “loads”e c re cre cre
correspond ing to separate application of the three types of loads*
considered (and all for the same mode number even though minimum failure

loads for the different loads may occur for different modes). The

indices ci, ~3, and y, while often suggested by theoretical considerations,
are usually selected empirically on the basis of experimental and/or

numerical results.

Limited calculations with expressions such as Equation (82), an

example of which is illustrated in Figure 8 for the “tee” of Figure 6,

suggest that for design purposes a linear interaction, as follows,

1.0

\~o s -
BASED ON EQUATION 1$2)

“7
0.6 -

P

0.4 -
LINEAR

P \
~cts Qcri

0.2 -

I I I I
0 0.2 0.4 0.6 0.6 1.0

q

Figure 8 — Interaction Diagram for Combined Axial and
Lateral Loads

*The distinction between H and the moments associated with q is the
following. The moments associated with q arise due to local bending of the
plate—beam between supporting transverses, whereas M is the moment compo—
nent, approximately constant between adjacent transverses, due to overall
grillage bending .
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a

~~M ~~~~~~~~ 1 (84)
crc cre

is the appropriate one to use. Although a bit conservative, this selection

seems warranted until further evidence, either analytical or experimental ,

indicates a more realistic choice.

V Generall y speaking, the worst loading condition which can occur is

one in which all the loads present are directed so as to have a de-

stabilizing effect on the structure, i.e., the signs of all the ratios in

Equation (86) are positive. Certain loads, however, may effectively

contribute to s t ructural  instability only when they act in a preferred

direction, such as a compressive stress 0e 
or a positive moment H, for

example. When such loads act in the opposite direction they will produce

a stabilizing effect in the structure which will be indicated by a negative

sign for the appropriate ratio in Equation (84). In such cases, the worst

loading condition will likely be one in which only some of the loading

components are present. The choice of what loading components to include

in design calculations and whether to take into account stabilizing

effects  is a decision the designer must make on a case—by—case basis

relative to his knowledge of what loading combinations can and are likely

to occur.

Relative to the choice of which approach to adopt in treating tripping

under combined loading, the interaction formula approach offers certain

practical advantages. Empirical or semiempirical solutions, as well as

those of a more vigorous analytical nature, are readily adaptable to an

interaction formulation. This is particularly significant in this case

since tripping expressions, which take web deformations into account, are
not presently available for lateral loading. Semiempirical solutions,

therefore , will have to be employed, at least on a temporary basis. The

form of the interaction expression, through the indices ci, ~~~, and y, also

can readily accommodate the results of experimental investigations, if and

when such data are available (and regardless of what values any analytical
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theories say such indices should assume). This great flexibility and the

ease of application that the interaction formulation offers make this

approach a very reasonable and practical choice for design applications.

ESTIMATION OF PLATE ROTATIONAL RESTRAINT
The numerous examples presented more than adequately illustrate the

significant increases in tripping strength that rotational restraint along

the toe of the stiffener provides. To take advantage of this added

strength, it is necessary to be able to estimate the degree of rotational

restraint that the plating, to which the stiffener is attached, provides.

One approach to this problem is to apply Rayleigh’s principle as
previously described but to include one frame spacing of plating in

addition to the stiffener. When tripping occurs under axial end load the

plating is assumed to deform laterally according to the expression

mlixw w  sin — sin (85)
o a b

Since the junction of the stiffener web and the plating remain at right

angles, this expression can readily be written in terms of the rotation ~
of the stiffener , giving

w =
~~~

(
~~

) s i n
~~~

= (8~ sin 
~~ 

(-
~
) sin (86)

Computing the strain energy of the plate—stiffener combination and the

work done by the external forces and equating the two allows the critical

tripping stress to be determined as follows,
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2 3
cJ + E(I s2÷r)(~~~) +!~-~0~z \ a  ., 2 pbe

( a )  — (87)e cre 3 ~J
fl%

~ ~~ tb pbe
p 2 m2ii (a )e pbe

where 0 be is the classical elastic plate buckling stress for mode

number m,

G b 
- 

2 

[ (~k) 2] (88)

and 
~°e~~be 

is the peak value of stress (at the stiffener) at elastic

plate buckling correspond ing to a nonuniform distribution of stress in the

y—direction. (When the distribution of stress in the y—direction is

uniform, ( a ) m
b is equal to a be.)

If it is assumed that the rotational spring constant of the plate

interacts linearly with the axial inplane stress,

r 
_ _  

1
c — c  I i — e (89)

0 1  (~~~)
tm

L

where C
0 

is the spring constant of the unloaded plate, then this relation-

ship can be substituted into Equation (21) and a modified expression for

(a ) determined. This givese crc

2 2 V

GJ+E(I s2+r)(~~~) +c (~
_ -)

( a )  — 
Z \ a  O miT (90)e cre C 2
I + 

0 
(~~~~

P ( 0 )
15 \m’TT

e p be
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An examination of Equations (87) and (90) indicates that they are

identical provided that

c ~~~~~~~~~~~~~~~~~ (91)
o\ mlT 

2-ri2 pbe

Solving the above expression for C and making use of Equation (88) pro-

vides the following

~ = 4 a ~� [i+ (~~) 2 ]
2 

(9 2)

which, in combination with Equation (89), is the relationship being sought .

For practical applications, certain modifications of the above ex-

pressions are desirable at least until numerical and/or experimental

validation of the theory can be provided. One such modification involves

the use of the buckling stress (cY )
~ be 

in Equation (89). This stress will

not, in general, correspond to the minimum plate buckling stress since

the mode number m used in determining (Ge)
m
be 

is the tripping mode

number. This mode number will generally be lower than that corresponding

to the minimum plate buckling stress, here denoted by (o) b
. Although

the problem is being investigated , there remains no clear understanding of

the state of restraint (or destabilization) provided by the plating when

the stress condition (a ) < a < (a )m holds. (Also, if the truee pbe e e pbe
tripping mode shape contains any Fourier components of the mode correspond-

ing to the minimum stress plate buckling mode, it appears that linear

theory would predict that the plate restraint would drop suddenly to zero

as the minimum plate buckling stress is approached , although probably not

in a linear manner.) Consequently, it is suggested that Equation (89) be

modified to the following:
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r
C

C 1— - - - ‘~ (oo (o ) c t’ pbe
- I’ Pt)C -

C — ( 9 3 )

0 (o )
t. —. e~ pbt’

Since a conservative est Imate’ ~f e’I i e ~ct  Ivc width will l ead to an

optimistically high (unconservat  lye) est imat t of (&)
p~~ 

0111 furt her

mud L (Ic~ tion Is called for , ilt least until more real 1st i~’ values ot

t’f feet lye width are routinely app lied . This involves the use of the

classical elastic plate buckling st i-ess 0 • dcl m e d  by
- pt)&’ -

— 
4 2

k> (94)pbe tb 2

in place of the value (o ) . This Ee~td~ to the formulation for  C:is phe

I ~~

C I i— ~ 0 ~~~~~
o t  

~ / ‘ ihe
\ pbe~

C — ( ( ) I ~~~

0 0 V

C —

II 11w c m~wrva t I sm of Equal ion ( ‘) ) Is viewed to be’ excessive’, then :~

. conscrvslL Eve opt ton is puss [hIt’ through the use of the average’ piate
st ress ~1 (not to be confused with L iii ’ mean 51 rt’ss for the cross sec ton

in place of o in the above. However , It is sign if leant- to note that

if t he’ common pract ice of assuming a un I lorm distribution ot pr inutry stress

for stress levels below plate bucki ing (s adopted , t hen — —
~ ) — ~‘ , and Equations (‘I I) and (95) are’ ident tc*i.i. phe pbe

Because of lnew t’ ftc tt’n know ledge’ concerning tiw p tat Ing s behavior ,

one add i t  tonal mod if I cat t on must be ~~~~ Ide’ red with n’gn ret to est Ima t I ng

the appr opr ta t  e’ Valu e of C. The e’xpressluit (or C • Equa l Ion (92), was



derived on the basis of axial end loading and assumes that the tripping

mode shape was a constant amplitude sinusoid . For axial end load and

constant moment this is appropriate , but for lateral loading the more

complicated tripping mode shapes which have been noted and described make

the application of Equation (92) for  in 1 open to  quest ion . Discre t ion is

obviously called for in th is situation . Since C is a monotonically in—
0 -

creasing function of m , one approach which can be adopted without fear of
overly optimistic predictions is to use the minimum value of C , correspond-

ing to in — I , namely

&
O 

- 
~ 

~~-‘~ [~+ 
~~ 

2] 

2

I or all mode numbers. Whti Ic this “minimum restraint ” approach will

obviously result in conservative predictions in some instances , its
application will still ot fer the potential for significant increases in

tripping strength since the greatest r e l a t ive  increases are associated

with the Initial increments of rotational stiffness. Until additiona l

research c l a r i f i es  these Issue s , this approach is recommended .

INELASTIC EFFECTS

Structures , in general , wil l begin to exhibit nonlinear behavior at

stress levels below the v icid point due t o  t h e presence of stress concen—

trattons , fabrication dIstortions , residual st r e sses , e t c .  As a result of

the t r e mendous comp lexi t ies  involved in treating this problem in a

rigorous maniler, there Is , at p resent , no completely sat i s fac to r  method

for considering the Inelastic t r i ppi ng of s t i f f en e r s  welded to continuous

plating , particularl y for app lication to structural design calculations .

It is puss lb Ic , however , to apply some simple “correct  ions ” to t hi t ’ elastic

solutions previously derived which are intended in a gross manner to

approximate the effect of such nonlinear behavior on the tri pping strength

of plate—stiffener comhin~ tions .
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The approach , which is described in more detail elsewhere ,3 involves
the application of a parameter referred to as the structural  proportional
limit ratio 

~~~ 
This ratio is defined as

op /a? (97)

where o~ is the structural proportional limit stress and 
~~ 

is the
material tensile yield stress. A value of p ~ 0.5 is typical for welded

3 r
ships.

Assuming that the inelastic tripping stress (G
e)cr is given by

(a) — ---c- 
~~~ (98)e c r  E e cre V

and approximating the ratio E
t
/E using the Ostenfeld—Bleich quadratic

parabolae

E
(99E a (a -a )

PS Y ps

leads to the following tripping strength expressions:

(a) (a) < p  ae cre e cre — r Y
(a) —
e cr

(100)
r

a? Li_P F p 1.) e cre
(a) > p  ae cre r Y

Although the nonuniform stress distribut ion renders the situation
V considerably more complex , this general approach can also be applied to
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the case of constant moment or uniform lateral pressure. In one such

treatment, Equation (100) is still used, al though , in these cases,

(a) is replaced by the maximum compressive bending stress corresponding

to either M or q obtained by dividing the bending moment by thecre cre
section modulus Z of the plate stiffener section. The difficulty with this

approach is that it inherently implies that some sort of major structural

“failure” will occur when the maximum compressive stress in the outer

fiber of the stiffener reaches the material yield stress. This is clearly

a conservative assumption. An alternative approach might be to assume

that the inelastic tripping moment Mcr is given by

(El)
Mcr El 

Mcre (101)

where (EI)
~ 

might be called a “tangent stiffness.” Approximating the

ratio (EI)
~
/EI in a manner similar to that of Equation (99) for E

~
/E will

lead to the following expressions for inelastic tripping moment

M M < p M
cre cre —  r p

M =

r M 
(102)

- 

M [l_Pr
(l_P

r) 14 
~ ]cre

14 > p 14cre r p

In these expressions H is the fully plastic moment for the plate—stiffener

combination and p ,  while still a structural proportional limit ratio, now
V 

represents the ratio of the “proportional limit moment” (the value of the

moment beyond which the moment—curvature relationship of the plate—

stiffener begins to behave in a nonlinear fashion) to the fully plastic

moment. Although there is little specific data to indicate a value for

in this case, a value of p~~~ 0.5 as recommended for use in Equation (100)

would seem to be a reasonable choice with which to start.
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The degree to which obtained from Equa t ion (102) will differ  from

that obtained from Equation (100) is primarily depend ent on the shape

factor of the plate—stiffener combinat ion. The shape factor is the ratio

of the fully plastic moment of the cross section to the moment required to

cause initial yield ing . For etiffeners which have much of their cross

sectional area concentrated in the flange, the shape factor will take on

values not much greater than 1 and , consequently, the differences resulting

from using the two approaches will be minimal. For flat bars, however,

the shape factor will take on greater values and the correspond ing differ-

ences between computed values of the inelastic tripping moment will be more

substantial. For example, the shape fac tors for the cross sections illu-

strated in Figure 5 are 1.72 for the flat bar and 1.30 for the tee.

A similar approach can also be applied in the case of combined load-

ing, with the inelastic “correc t ion ” being applied to the stresses

correspond ing to the predominant loading . Thus, where uniform compressive

load ing is predominant , Equa t ion (84) would be solved for a (which in this

case would represent the critical elastic tripping stress in the presence

of the other load ings) and this stress then substituted in Equation (100)

in place of (Oe)cre •

Since tripping stresses must often be calculated using an iterative

scheme (when p late rotational restraint is included ) there are two possible

approaches for includ ing the inelastic correc t ion. One approach involves

carrying out the iterations “completely elastically,” including the use of V

0pbe in Equation (95) for C, and then applying the inelastic modification
to the converged solution. The alternate approach involves apply ing the

inelastic modification within each iterative cycle. In this case it would

appear reasonable to use 0pb’ the inelastic plate buckling stress, rather
than 0pbe’ in Equation (95) . By rep lacing (Oe)cr with 0pbe ’ Equation

(100) can also be used to compute the necessary value of 0
pb~
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CONCLUSIONS
This report describes the application of classical energy theory to

V the problem of developing design oriented techniques for predicting the

lateral torsional (tripping) instability of plate—stiffener combinations.

Closed form solutions have been developed which show excellent agreement

with numerical results generated using the finite element method for axial

end loading and constant moment, but which are less universally reliable

in treating plate—stiffeners under uniform lateral loading.

The comparative solutions made with the finite element analyses have

very clearly illus trated the importance of including the effec ts of web
deformations, particularly for the stiffeners possessing substantial

flanges. Solutions which Ignore these effects have been shown to retain

acceptable accuracy only when the rotational restraint present along the

stiffeners line of attachment to the plating is nonexistent or very

small. In the course of the development this discovery provided the in-

spiration which eventually resulted in the derivation of solutions for

tripping under axial end load and constant moment, including the effects

of web deformation. These solutions have provided tripping load pre-

dictions which are in excellent agreement with the corresponding finite
element analyses for the complete range of rotational restraints con-

sidered. They are clearly more cumbersome to use In hand calculations

than the more simplified (and less accurate) expressions, but their

complexity does not preclude their effective use in manual calculations,

particularly in view of the increasing capability and sophistication of

hand—held calculators and desk top mini—computers. These solutions are

obviously ideally suited for programming on digital computers and thus V

should be extremely eff ective when incorporated into large structural
synthesis programs whose primary applications are in the preliminary
stages of structural design.

The major problem area encountered in this study is that of estimating

the critical values for tripping under lateral loading. For the solutions

presented , errors which range approximately from 0 to 20 percent can

reasonably be expected for the primary tripping mode (rn—i) with zero or

63



____ -V
~~~ 

-- V. ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ V- ~~~~~~~~~ ---- - V - V -  ~~~~~~~~~~~~~~~~~~~~~~~~~~~

extremely limited rotational restraint. For larger degrees of rotational

restraint and the higher modes which are a natural consequence, the
correspond ing errors are appreciably larger . The inability at present to

take web deformations into account and to adequately model the generally
more complex modal shapes (apart from the web deformation aspect) are the

primary culprits. These difficulties, in turn, are related to the

functional dependence of the a stress on the x—coordinate. Until more
x

satisfactory analytical solutions are developed , either semiempirical

solutions based on the theory presented here and numerical analysis, or

finite element programs directed specifically at the tripping problem,

will have to be utilized .

Several other areas for which further study is required have been

indicated , or at least alluded to, in the main text. With regard to the

estimation of plate rotational restraint, several problem areas can be
identified : (1) the estimation of restraint for the more complex tripping

mode shapes which occur when lateral loading Is present, (2) an improved

definition of the influence of plate buckling on plating restraint, and

(3) the effect  of post buckling behavior of the plating on stiffener

tripping. Inelastic tripping behavior is another very fer tile area for
further research. It is difficult to be specific in this area since the

present design oriented techniques as outlined here are extremely crude

and a careful examination of the whole area is easily justified. Tripping

of nonuniform and unsymmetrical stiffeners are also subjects of major and

practical interest. This “wish list” is not all—inclusive, nor is it in-

tended to be, but it should clearly indicate that there are certainly

many questions remaining to be answered with regard to the tripping

phenomenon.
The ultimate goal of this study being design applications, this

report would not be complete without consideration of the current Navy

design practice relative to stiffener tripping. In this design practice
8

the maximum ratio of st iffener span to flange width (a/f ’,,), for which
support is required only at the ends, is given by
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(103)
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~
/ 1 +4(f ) (~)-(~.~ ~ ( t )

2 ( f )2

If the following approximations are made ,

Iz~~~~
4ãtff

3

I ~~ t f d 2 +~~~ t d 3
p f w  3 w

s~~~~~d (104)

J 3 w f

r ~~~o

then Equation (103) can easily be shown to be identical to Equation (21)

with C = 0, (a ) — a , v — 0.3, and m a. The use of this criteriae cre Y
is designed to insure that stiffeners are proportioned such that tripping

will not occur at any stress less than yield. This criteria is somewhat

conservative since it is based on a theory for purely axial compression

(whereas most stiffeners experience loading which is a combination of

bending and axial compression) and it ignores the rotational restraint of

the plating (C 0). Factors which offset this inherent conservatism to a

small degree involve the selection of m a and the neglect of web
deformations. The value of m chosen is intended to reflect the degree of

rotational restraint in the plane of the web anticipated at the ends of

the stiffener . The neglect of web deformations in this case is not

significant since, when plating restraint is also neglected , the e f fec t  of

web deformations is in general quite small. It should also be noted that
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the criterion represented by Equation (103) is applicable only to tee

stiffeners and for a number of reasons cannot be appropriately applied to

flat bar stiffeners.

As a f inal comment , it has become quite common in reports of this
type to decry the lack of experimental data which are available for
validation of the theories presented. This report is no different . The

value of good experimental data cannot be overest imated because any
predictive techniques , no matter how sound their theoretical base, are
only of value insofar as they are capable of describing what occurs in the

real world. The development of confidence in the application of new

technology in the design process will continue to be a painfully slow

process without the validation only correlation with experimental data can

provide .
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APPENDIX A
SAMPLE PROBLEMS

Although the application of many of the expressions in the main text

is perfectly straightforward , the use of sample problems can often be

very enlightening, particularly when the solution procedure requires a

number of steps.

Consider the pldte—tee stiffener combination whose geometry is defined

in Figure 6. A number of geometrical parameters require evaluation in

order for the tripping loads to be determined. These parameters are

defined in Figure 2 and for this example have the following values:

— 58.79 cm4

— = 14.98 cm

1’ = 40.57 cm6

J — 9.34 cm4

I 3306 cm4p

ZERO ROTATIONAL RESTRAINT

If no rotational restraint is assumed , i.e.,  C — 0, then a reasonable

value for the tripping stress for mode m = 1 under axial end loading may

be found using Equation (21). Assuming values of E 6.894 x io6 N/cm2

and v — 0.3 (which result~in a value C = 2.652 X 106 N/cm
2), this

expression gives

~°e~ cre 3306 
[(2.652 x 106) (9.34)

+ (6.894 x l06) ((58 .79) (14 .98) 2 
+ 40.57) (ir/ lbO) 2 ]

V ‘ — 18,130 N/cm 2 (A.1)
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The procedure for determining the tripping load under lateral loading V

is somewhat more involved. First the coefficients of the 11 (K) and F (K)

functions must be determined. The most convenient form of these ex—

pres8ions is provided in Appendix B. Using these expressions the h~ co—

efficients can be readily calculated, giving f or mode in — 1. and C = 0 the

following ,

— 124.0

h1 
— —248.0 (A.2)

h2 
— 126.4

To calculate the coefficients ~~ a few additional geometrical parameters

(not previously defined here or in Figure 6) are required, namely

d — 14.33 cm
V

d 15.04 cm
c 

2 
(A.3)

Af = 11.218 cm

I = 58.34 cm4zf

The parameter S, also required, is defined by Equation (33). This

parameter thus takes on the value,

S = 29,890 cm5 (A.4)

The coefficients f~ are also functionally dependent on the degree of

vertical fixity of the stiffener ends. Considering first the simply

supported case leads to the values,

f
0 

8.619

f
1 

— —14.958 (A.5)

— 6.958
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The coefficients h~ and f~ are used to compute the three coefficients of
the quadratic equation in K, Equation (49). Using the above values , this

• results in the expression

165.1K 2 
- 453.3K + 282.7 = 0 (A.6)

for which two roots can readily be computed , namely

K — 1.788
1 (A.7)

0.958

The critical tripping loads corresponding to these two roots can now be

readily calculated using Equation (46). This expression requires the

vertical moment of inertia of the plate—stiffener combination which,

through the routine computation , is found to be

I = 2071 cm
4 (A .8)

The fu nctions H
1

(K) and F1(K) must also be evaluated . Using the two

roots for K and the coefficients h~ and f~ previously defined , the

following values result ,

K1 
K ,

111(K) = 84.67 2.421

(A.9)
F1(K) — 4.118 0.675

Subs t i tu t ion of t he above values into Equation (46) f ina l ly lc~aJs to t h..

desired result , namely
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— 16,540 N/cm 
I-for K — 

(A.lO)

— 2 , 885 N/cm

for K =

Of these two values, the one corresponding to the root 
~2 

is the one of Vpractical interest. The critical value corresponding to 
~~ 

might betermed a “high energy” tripping load and, although mathematically possible,it represents a tripping condit ion which could never occur in the rea lStructure.

For the case where the ends of the stiffener are clamped , the pro-cedure is the same as previously described except that in this case thecoefficients f~ take on the following values, 
V

—0.381

3.042 (A. 1l)
—3.042

These valucs and the coefficients h~ Previously defined lead to thequadratic equation ,

369. 91(2 - 658 .1K + 282.7 = 0 
(A.l2)

and the roots

K — 1.0541 

(A.l3)0.725

These roots , in turn , lead to the critical tripping loads

V 
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+ 4 ,397 N/cm
q = forK K (A.14)
cre 1

- 
— 38,040 N/cm

for  K =

The occurrence here of tripping loads of both signs (positive and

negative) Indicates that  t r ipp in g can occur due to loads act ing in ei the r

di r ection , unl ike the simply supported case. Thus , both of the above

V 
t r i ppi ng loads represent realistic t r ipp ing phenomena. Which of these

loads in any given situation Is the one of practical interest will depend

on the direction of the lateral loading or loadings under considerat ion.

FINITE ROTATIONAL RESTRAINT

If any but a very small amount of rotational restraint along the

s t i f f ene r ’s line of attachment to the plating is to be considered , then

the solutions for trippin g which include web deformations should be

uti l ized . For axial end loading this solution is given by Equatio n (70) ,

the coefficients  for which are provided by Equations (71). These

expressions involve the additional parameters

V D 2.376 X 1O~ N—cm

z = 11.26 cm (A .15)
A = 21.56 cm 2

= 880 cm 4

as well as the d imensionless rotational restraint parameter , R. Assuming

a rotational spring constant of the supporting plating of C = 30,000 N— cm/

rad leads to a value for R of

R = 0.322 ~A .1h)

For t h is value o f R the coefficient k~ has the following values (for m=l),
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1.225 ’ 10
6 N

k2 
— —15.53 cm~

k
3 — 1.610 ~ l0~ N—cm~ (A.17)

— -99. ~ 
V

k
5 

— —10.81. ‘ lO~ N—cm

— 11.99 cm
1 V

which load to the quadrat Ic equa t ion

- )  141 197 ~ — (~ . 161 -
‘ 10 ) (

~ 
) 

- 
+ (0.803 ‘ 10 ) — 0 (A. 18’~0 t 10 0 (‘ I L .

and t (na t lv , the roots

I . 6 ‘ I O~
’ N/cm~

— (A.1Q ~

34 ,700 N / cm~

The root o t tnt c 1- cs t is the second oiic; t he first root repro sent s a

so tnt ton mode which is mathemat tea it v but not physically possible.

For t hi’ case ot lateral 1o~d tug , solut Ions which tnc lude the  o ft oct s

ot web dot ormat Ions are not present lv ava liable . Consequent Iv , to treat
his t - : l  S(’ one has t he  c ho ice of ignor tng t he tnt m ono t~ of the rot at lona I

resist : l I I e o , 01 ii this course is not preferable , ot making use of an

ava I lab Ii~ t in it ‘ element prog ram • F tnt to element results Co L the problem

he ing examined here are presented Lu Table 5 in the ma in t”xt for several

vnl ues 01 r ot a t  tona l resistance.

IN EI .AS T II ’ EFFEC TS

I the mater 1:1 1 has a y ield st ross ot — .~0, 000 N/cm~ and a

st rue t u r n  I prop ort tona l l i m i t  rat io p — 0. 5 Is assumed • then  the SX in I
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end loading solutions for both zero and finite rotational resistance should

be adjusted b r  inelastic eftt’~-ts according to Equation (100). For

~r 
— 0.5, this expression becomes

j~~~r ) (
~ 

) —.
c ore o cre — . ‘i

(~ 
) - (A. 20)e cr

I- 
_____I ~ 4 ( 0  )

~~I e crc

(o ) 
~~

- 
~~- e c re 2 \

Thus for  zero ro ta t iona l  r e s t r a in t , the inelastic t r ipp ing  st  1 e ’sS Ir000IIItV ’S

~
‘e~cr 

— 20 ,000 [i_ 
~ 

20~ OQO]

(A .21)

14,480 N/cm 2

and for C — 30,000 N-cm/rad

V 

~°e~ cr - 20,000 [i_ ~ ~
°
~2~~oo]

(A. ~~
— 17,120 N/cm~

If the “effective width” for plating e f f e c t i v e n e s s  under inp iano loading

is also assumed , in this example’, to be equal to 30. 5 cm and the stiffener

spacing b = 45 cm, then the mean inelastic tripping stresses ean ho

computed according to Equation (27). This expression gives

(o ) — ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ‘ 14 480
t~t cr 21.56 + (45.0 ~~ 0.8) ‘

(A. 2 I ’)

— II,56() N / c m
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for zero rotational restraint and V

( 
~ 

— 
21.56 + (30.5 x 0.8) x 17 120

m cr 21.56 + (45.0 x 0.8)
(A.24)

— 13,670 N/c m2

for C 30,000 N— cm/rad.

Since the classical plate buckling stress for the plating in this

example (a l60 cm, b45 cm, t—O.80 cm) according to Equation (94) is

0pbe — 0pb 
— 7,880 N/cm2 (A.2 5)

it should be immediately clear that iterations are unnecessary in this V

case and that the appropriate solution (assuming that the resistance

represented by C is due to the plating) is the one corresponding to C — 0

(zero rotational restraint).

To examine how the iterative procedure is carried out , consider the

same stiffener attached to plating 1.2 cm thick at a uniform spacing of
- 

38 cm. In this case, the classical plate buckling stress (for a l60 cm,

b 3 8  cm, t—l.2 cm) is

0pbe — 24 ,860 N/cm2 (A.26)

Correcting this value for inelastic effects (using 1’r 
— 0.5 here, also)

gives

Cpb — 15 ,980 N/cm2 (A.27) V

Since the dimensions of the plating do not enter into the calculations
for (a ) and (a ) , the previous values computed are also valid here.e cre e c r  V

V ~~V V -- —- VV ~ ~~~~~~~~~~ _ -V - 
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Since C and (C
e)cr are functionally related by Equation (95), the value of

(C
e)cr calculated for C — 30,000 N—cm/rad can be used as a “starting”

value in the iteration process. The value of C used in Equation (95) is

def ined by Equation (96) which , in this case, has the value

C — 158,100 N—cm/rad (A.28)

Substituting the critical stress (O)c 
— 17 ,120 N/cm2 into Equation

(95) , produces

C — 158,100 (1— ~~~ 
< ~

or (A.29 )

C —  0

This value may now be used as the second estimate of C, or (hopefully) to

minimize the number of cycles, a value may be selected which is somewhere

in between the “assumed” (C—30 ,000) and “calculated” (C 0) values. Try

C 5,000 N—cm/rad for the second estimate. This gives

(a ) — 21,070 N/cm 2
e cre

(A . 30)

(a ) — 15,250 N/cm 2
ecr - V

and , consequently ,

C — 158,100 (1— ~~ 
— 7,220 N—cm/rad (A.31)

Now , assume C — 6,000 N—cm/rad . This results in
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~°e~cre — 21,840 N/cm2

V 

~°e~cr — 15,420 N/ cm2 
(A.32)

C 5,540 N—cm/rad

Now , assume C — 5,800 N—cm/rad . This results in

~°e~cre 
= 21,680 N/cm2

( a )  = 15,390 N/cm2 (A.33)

C = 5,840 N—cm/rad

Because of the very slight changes in the tripping stresses (G
e)cr

between the last two cycles, practical considerations would dictate that

the iteration process has converged sufficiently for engineering purposes.

Thus, the final solutions, rounded o f f , are

(a ) — 21,700 N/cm 2
V e cre 

(A.34)
(a ) — 15,400 N/cm

2
e cr

COMBINED LOADING

Returning to the original problem (b—45 cm, b —3O.5 cm, t—O.80 cm),

consider the situation when both axial end loads and lateral loads are

occurring simultaneously. In this case elastic tripping is assvmed to

occur when the expression

- + — 1 (A.35)
e cre cre

is satisfied. If rotational restraint is ignored (C 0), then values of

(a ) and q (for clamped end cond itions) have prev iously beene cre cre
computed . Thus , the above expression becomes
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18,100 + 4,400 — (A.36)

For a lateral loading of magnitude q 450 N/cm (corresponding to a

uniform pressure of 10 N/cm
2) the maximum bending stress in the flange

of the stiffener will be on the order of 5,000 N/cm~ Thus, at tripping,

a will be the predominant loading. Solving for and designating the

result by (a ) to distinguish it from (a ) , gives
e cre ,q e crc

(Ge)cre q 
= 18,100 

~~~ 4,400
) 

(A.37)

— 16,250 N/cm2 V

Since Ge 
is the predominant loading, the inelastic correction is applied

to (Ge)cre q resulting in

(a
e)cr ,q — 13,850 N/cm2 (A.38)

The mean axial tripping stress is then

(Gm)cr ,q — 11,060 N/cm2 (A.39)
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APPENDIX B
QUADRATIC COEFFICIENTS FOR H (K) AND F (K) FUNCTION S

The functions 11 (K) , 11 (K) , and Fm (K)
~ 

defined in the main text in

relation to laterally loaded beams, are quadratic functions of the scalar
parameter K. Thus these functions can be written as -

- h
0 
+ h

1
K + h

2
K
2

H ( ~K) - + li
1
K + I-t2

K2 (B.l)

F (K) — f
0 
+ f

1
(K) + f 2K

2

The determination of the appropr iate value of K requires that the specif ic
coeff icients h1, hi, and f~ be identified. This can be readily accom-

plished simply by rearranging and collecting terms for each of the three

functions. Therefore, from Equation. (43a) one obtains

h
0 
= (m+2)2 + (m+2) 4 ir

2
E (I 2+~) + 

a
2
C (B.2a)

a G J  Z ‘ir GJ

- h
1 

— — 2 [(m+2)
2 
+ (~+2)~ 

1T
2E (I ;2÷r) + a

2
C ] (B.2b)

aGJ ir GJ

2 2
h2 — 2(m 2+2m+2 ) + [m4+(m+2 ) 4

J 
71
2
E (I 2

+~) + 2a C 
(B.2c)

a G J  z 
ir GJ

Similarly, from Equation (43b), the coeff icients for H (K) are def ined

— (m+2) 4 (1~4~) 
2 
+ 6(m+2)

2 
(l—v) + 3a2C (B.3a)

a i r D d
V



- 2 1(m+2 ) 4 
(
~~~

)
2 
+ 6(m+2)

2 
(l-v) 

~
2
Dd] 

(B 3b)

[m4+ (m+2)~ J (~:a) 2 + 12(m 2
+2m+2) (1—v) + 

tt2D d  
(B.3c)

For the function F (K), two sets of coefficients must be defined, one for 
V

the simply Supported case and the other for the clamped case. For the 
V

simply Supported case Equation (45) will yield

~0 
= (m+2) 2 3 

- ~~: IAf t f (d~
_h÷ ~ t) +bt

2
hj (B.4a)

= — 2 (m+2) 2 + .
~~~~

. [i~intm+~~ f~
. i j

~ L (m+l)

12d
+ —~~._! 

[A1t1 (d~
_h+ 

~ ~
) +bt 2h] (B.4b) —

- a
2 
+ (~~2) 2 - 

~~ I1~~(m+2) {l+ l } ]
~ L (m+1) J

12d
- -

~~~~
---

~~ {A1t1 (dc
_h+ t) +bt

2
h] (B.4c)

For the clamped case these coeff icients become (from Equation (53))

f
0 

- — — 
~~~ {Aftf (d~

_h+ 
~ ~) +b t

2
h] (B.5a)
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f
1 — ~~~ 

~~~~ {
i.+ 

(~~~ ) 2

l2d
+ 

~2s
” 
[Aftf (d~

_h+ -
~~~ t) +bt

2
h] (B.5b)

— — 

~~ 1+ 
1

u L (ti*1)

l2d
— ~

2
S

W 
~~~~ (d~

_h+ 4 ~) +bt
2
hl 

(B.5c)

(Note that in the expressions for the ~~ the symbol h for the location of
the neutral axis should not be confused with the coefficients h~ previously
defined.)

-

V
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• APPENDIX C
COMPARISONS WITH EXPERIMENTAL DATA

Although relevant experimental data on tripping fa ilure are virtually
nonexistant, the Naval Construction Research Establishment (NCRE) grillage

tests previously cited provide data on two steel grillages whose ultimate

failure was ascer tained to have been caused primarily by longitudinal stif—
fener tripping. The pertinent scantlings (mean values) of the two gril—

lages , identified as grillages la and lb, were as follows:

Grillage la lb

a = 48 in. 48 in.
b = 24 in. 24 in.

- t — 0.315 in. 0.310 in.
d = 6.05 in. 6.0 in.*

V 

t — 0.284 in. 0.28 jn•*
V

f — 3.11 in. 3.0 in.*
V

tf 0.56 jn.* 0.56 in.*

*Nomjnal values

Both grillages were nominally identical, the only difference being the

presence of a 15 psi lateral loading on grillage lb.

GRILLAGE la
Employing a modulus E 30 x 106 psi and a Poisson ’s ratio V = 0.3

the elastic tripping stress for gril].age la according to Equation (70)

with C = 0 and a 1 is

(a ) — 104.7 ksi (C.l)e cre

Substituting this value into Equation (100) with a.y — 37 ksi and
leads to an inelastic axial tripping stress

(a5)~~ 
— 33.7 ksi (C 2) 



Since the classical elastic plate buckling stress, G b~~ 
given by Equation V

(94) is about 18.7 ksi, the assumption of the value C — 0 is thus seen to
be correct and no iteration with regard to this parameter is necessary .

Therefore, one may proceed directly to the calcula t ion of the mean tripping
stress - (a )m c r

The calculation of the mean tripping stress requires the knowledge of 
j

the plating effective width b
e• Since the grillage at tripping has been

loaded above the level of plate buckling, it is clear that the plating

should be expected to be somewhat less than fully effective. Assuming3

the following expression

(C.3)

where, in this case, $ is a plate slenderness ratio

b / c
~~~~ = —  

~
,i- (C.4)

leads to a value of effective width

b~~~~ O.6O7b = 14.6 in. (C.5)

— Inserting this value into Equation (27) (with (G
e)cre replaced by (Ge)r

)

in turn provides the desired mean inelastic tripping stress,

(a ) = 24.5 ksi (C.6)a Cr

This value compares quite favorably with the experimental value of 27.8 ksl

measured at NCRE.
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• GRILLAGE lb

Grillage lb is nominally identical to la, differing only through the

- addition of a 15 psi lateral pressure. For this grillage, using Equation

(70) with C = 0, a — 1, and the scantlings previously listed , the elastic

axial tripping stress becomes

(a ) = 99.4 ksi (C.7)
e cre

(Note that this value does not yet include the effects of lateral pressure

and differs slightly from that of grillage la because of slight differences

in the tabulated mean values of the various scantlings.) To include the

effects of the lateral loading, the tripping load due to lateral loading

alone is computed . Assuming an effective breadth of SOt for the combined

plate—stiffener combination and then substituting the appropriate parameters

and coefficients into Equation (46) results in a critical lateral loading

f or clamped ends, C = 0, and m = 1,

+ 17,100 lb/in. (C.8)

The applied lateral loading of 15 psi represents an effective line loading 
V

of 360 lb/in, for 24 in. frame spacing. Using the linear interaction Equa-

tion (84) the elastic axial tripping stress in the presence of lateral

load ing can now be computed,

(a) =(a ) (1— g
e cre ,q e cre~~ qcre

= 99.4 (1 
— 17,100 ) (C.9)

= 97.3 ksi
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Since it is easily demonstrated that at failure the axial load is predomi-

nant, the inelastic tripping stress can now be calculated in the same

manner as for gr illage la , using Equation (100) . This gives

(a ) = 33.5 ksi (C.lO)
e cr ,q

Assuming the same expression for be
/b as for grillage la, leads to a value

of ef fec t ive width

be ~ 
O.600b = 14.4 in. (C. ll )

and finally to the mean inelastic axial tripp ing stress

(a ) = 24 .1 ksi (C.12)
m c r ,q

The corresponding experimental value from the NCRE tests is 27.1 ksi.

Again agreement appears quite reasonable.

Although the agreement between analytical and experimental results

appear quite encouraging, it is only fair to point out that several param-

eters whose values are difficult to define precisely can influence the

predicted analytical values to varying degrees. The most significant ,

perhaps, is the cho ice of plating effective width which is necessary to

determine “mean” from “peak” stresses. It can be demonstrated that, de-

pending on the degree of plating effectiveness assumed , a rather wide range

of mean tripping stress values can result. For example, in the case of

grillage la, the inelastic axial tripping stress 
~~e~cr — 33.7 ksi , which

is a peak stress, can produce mean tripp ing stress values (C)cr as high

as 33.7 ksi for fully effective plating to as low as 10.2 ksi for complete-

ly ineffective plating. The most appropriate value lies somewhere in be-

tween these extremes. Indicating that such wide ranges of predicted values

can exist should not be interpreted as completely negating the value of the

excellent agreement described here, rather it serves to point out that

caution must be exercised in attempts at experimental correlation when

limited amounts of data are available. V
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